ОБЩИЕ ПОДХОДЫ К ОЦЕНКЕ ФУНКЦИОНАЛЬНОЙ ГРАМОТНОСТИ ОБУЧАЮЩИХСЯ ОСНОВНОЙ ШКОЛЫ

«Мы должны научиться измерять то, что важно, а не то, что легко измерить»

ИЗ УКАЗА ПРЕЗИДЕНТА РОССИИ ОТ 7 МАЯ 2018 ГОДА:
ПРАВИТЕЛЬСТВУ РФ ПОРУЧЕНО ОБЕСПЕЧИТЬ ГЛОБАЛЬНУЮ
КОНКУРЕНТОСПОСОБНОСТЬ РОССИЙСКОГО ОБРАЗОВАНИЯ,
ВХОЖДЕНИЕ РОССИЙСКОЙ ФЕДЕРАЦИИ В ЧИСЛО 10 ВЕДУЩИХ
СТРАН МИРА ПО КАЧЕСТВУ ОБЩЕГО ОБРАЗОВАНИЯ.

Из Государственной программы РФ «Развитие образования» (2018-2025 годы) *от 26 декабря 2017 г*.

Цель программы – качество образования, которое характеризуется: сохранением лидирующих позиций РФ в международном исследовании качества чтения и понимания текстов (PIRLS), а также в международном исследовании качества математического и естественнонаучного образования (TIMSS); повышением позиций РФ в международной программе по оценке образовательных достижений учащихся (PISA) ...

ИЗМЕНЕНИЕ ЗАПРОСА НА КАЧЕСТВО ОБЩЕГО ОБРАЗОВАНИЯ Приоритетной целью становится формирование функциональной грамотности в системе общего образования (PISA: математическая, естественнонаучная, читательская и др.)

Создание поддерживающей позитивной образовательной среды за счет изменения содержания образовательных программ для более полного учета интересов обучающихся и требований 21 века.

Новый взгляд на образование

Навыки XXI века

Базовые навыки

Как учащиеся применяют базовые навыки для решения повседневных задач

- 1. Навыки чтения и письма
- Математическая грамотность
- 3. Естественнонаучная грамотность
- 4. ИКТ-грамотность
- Финансовая грамотность
- Культурная и гражданская грамотность

Компетенции

Как учащиеся решают более сложные задачи

- Критическое мышление / решение задач
- 8. Креативность
- 9. Умение общаться
- Умение работать в команде

Личностные качества

Как учащиеся справляются с изменениями окружающей среды

- 11. Любознательность
- 12. Инициативность
- 13. Настойчивость 14. Способность
- Способность адаптироваться
- 15. Лидерские качества
- Социальная и культурная грамотность

Непрерывное обучение

Модели Европейской классификацией навыков, компетенций и профессий (ESCO), Партнерства за навыки XXI века, enGauge, Brookings и Pearson. Организация экономического сотрудничества и развития. 2013. http://www.oecd.org/site/piaac/surveyofadultskills.htm

СРАВНИТЕЛЬНЫЕ МЕЖДУНАРОДНЫЕ ИССЛЕДОВАНИЯ

PIRLS

Progress in International Reading Literacy Study – международное исследование качества чтения и понимания текста

PISA

Programme for International Student Assessment оценивает грамотность школьников и умение применять знания на практике

TIMSS

Trends in Mathematics and Science Study – международное исследование по оценке качества математического и естественнонаучного образования

Сроки процедур оценки качества образования

Год	Процедуры		
2019	TIMSS		
	Общероссийская оценка по модели PISA		
2020	Общероссийская оценка по модели PISA		
2021	PISA		
	PIRLS		
2022	Общероссийская оценка по модели PISA		
2023	TIMSS		
	Общероссийская оценка по модели PISA		
2024	PISA		
PISA – раз в 3 года			

TIMSS – раз в 4 года

PIRLS – раз в 5 лет

Международное мониторинговое исследование качества школьного математического и естественнонаучного образования (Trends in Mathematics and Science Study)

Международная программа по оценке образовательных достижений учеников (Programme for International Student Assessment)

Международное исследование качества чтения и понимания текста (Progress in International Reading Literacy Study)

Модель оценки функциональной грамотности PISA-2018

Результаты РФ в PISA-2018

Международная оценка навыков учеников в возрасте 15 лет в рамках исследования PISA проводится по 3 направлениям. Среди 79 участников Российская Федерация заняла в последнем цикле PISA-2018*:

> 31 место

33 место

30 место

Читательская грамотность

Естественнонаучная Математическая грамотность

грамотность

Выводы по результатам исследования

- У российских школьников долгий путь поиска ответа при работе с текстами в интернете.
- Школьникам трудно применять знания в реальных или незнакомых ситуациях.

^{*} Результаты исследования PISA-2018 опубликованы в декабре 2019 года

Модель оценки функциональной грамотности: PISA-2021

Начало нового цикла исследования PISA -2021

- Сохранение основных направлений (математическая, естественнонаучная, читательская и финансовая грамотности); приоритетная область математическая грамотность
- Развитие технологии адаптивного тестирования для оценки математической грамотности
- Совершенствование концепции оценки математической грамотности
- Введение нового направления креативное мышление
- Введение новой области оценка личного благополучия обучающихся и учителей

Рособрнадзор: Общероссийская оценка

по модели PISA

Приказ Рособрнадзора № 590, Минпросвещения России № 219 от 06.05.2019

Оценка качества образования на основе практики международных исследований ФП «Современная школа» НП «Образование»

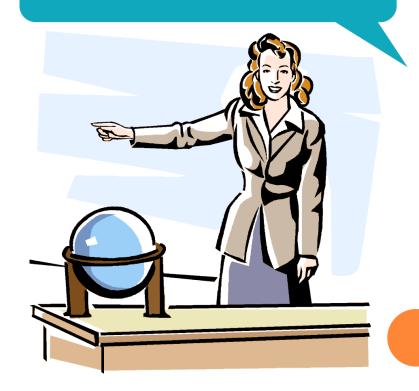
- ✓ В каждом регионе– репрезентативная выборка, от 75 до 150 ОО
- ✓ Срок проведения: сентябрь-октябрь
- ✓ Школьники в возрасте от 15 лет и 3 месяцев до 16 лет и 2 месяцев (с 7-го класса)
- ✓ Оценка проводится на компьютерах
- ✓ В процессе проведения в аудитории присутствуют не менее 2 организаторов

Как формируются группы субъектов:

- 1. схожие размеры групп по количеству обучающихся
- 2. представительство всех федеральных округов
- 3. представительство «сельских» и «городских» регионов

№	Регион 2019 год
1	Республика Саха (Якутия)
2	Республика Бурятия
3	Саратовская область
4	Ульяновская область
5	Вологодская область
6	Кабардино-Балкарская Республика
7	Ставропольский край
8	Иркутская область
9	Томская область
10	Ямало-Ненецкий автономный округ
11	Ивановская область
12	Липецкая область
13	Брянская область
14	Краснодарский край

Инструментарий – PISA for schools, модель 2015


Самарская область — 2024 год

Особенности исследований качества по модели PISA

1. Участники выполняют задания на компьютерах

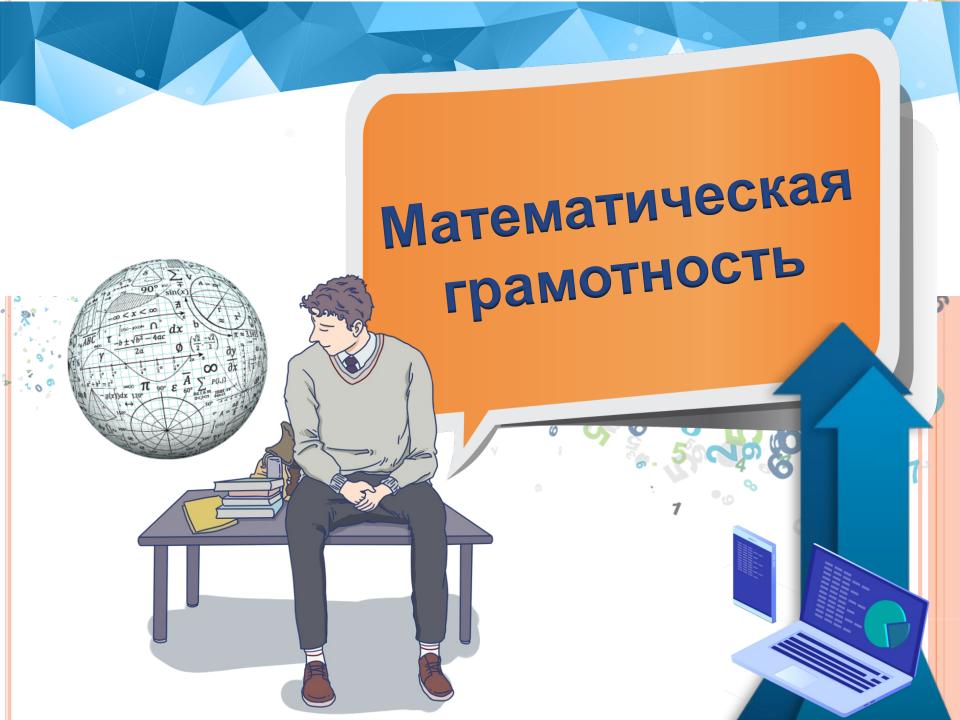
2. Задания из банка PISA. Помогут развить метапредметные и предметные умения

3. Есть возможность оценить результаты всех школьников по единой шкале PISA

РЕГЛАМЕНТ ИССЛЕДОВАНИЯ ПО МОДЕЛИ PISA

Сроки тестирования

Октябрь или ноябрь ежегодно с 2019 по 2024 год. Анализ и подготовка отчета – I квартал года, который следует за годом проведения региональной оценки по модели PISA.


Технические условия
Необходимо такое
количество компьютеров, чтобы
одновременно прошли тест все
участники. Но возможно провести
тест в несколько сессий.

Возраст участников

В оценке принимают участие ученики, чей возраст на момент тестирования от 15 лет и 3 месяцев до 16 лет и 2 месяцев.

Математическая грамотность

Способность человека формулировать, применять интерпретировать математические явления в разных контекстах. Включает способность к математической аргументации, применение математических операций, фактов и инструментов для описания, объяснения и предсказания явлений. Способствует пониманию роли математики в современной жизни

Три аспекта математической грамотности

- 1. Математический процесс действия, которые надо предпринять для решения.
 - 2. Предметное содержание задачи.
- 3. Контексты задач оценочных материалов

Контексты задач

Индивидуальные

- Задачи про деятельность человека, его семьи, группы сверстников
- Виды деятельности: приготовление пищи, покупки, игры, здоровье, личный транспорт, спорт, путешествия, расписание дня и личные финансы

Профессиональные

- Задачи про сферу труда
- Понятия: измерение, расчет и заказ материалов для строительства, начисление зарплаты, бухучет, контроль качества, дизайн и архитектура
- Задания должны быть доступны для учеников 15-ти лет

Контексты задач

Социальные

- Задачи про сообщество: местное, национальное, глобальное.
- Понятия: система голосования, общественный транспорт, правительство, госполитика, демография, реклама, национальная статистика и экономика

Научные

- Задачи про то, как применять математику в мире природы, про науку и технику.
- Контексты: погода или климат, экология, медицина, космическая наука, генетика, измерения и сам мир математики

Изменения в концепции математической грамотности

«Новая точка зрения на связь между математическими рассуждениями и решением поставленной проблемы: для решения проблемы математически грамотный обучающийся сначала должен, опираясь на свои предметные математические знания, увидеть математическую природу проблемы, представленной в контексте реального мира, и сформулировать ее на языке математики. Это преобразование требует математических рассуждений и, возможно, является центральным компонентом того, что значит быть математически грамотным.»

Новые содержательные области математической грамотности

о Включены четыре новые темы:

- **Явления роста**: разные типы роста линейные, нелинейные, квадратичные и экспоненциальные (рост системы, в которой изменение пропорционально уже существующему количеству);
- Геометрическая аппроксимация: аппроксимация особенностей и свойств нестандартных или незнакомых форм и объектов путем разбиения этих фигур и объектов на знакомые формы и объекты, для работы с которыми существуют формулы и инструменты;
- Компьютерное моделирование: анализ ситуаций (которые могут включать составление бюджета, планирование, распределение населения, распространение болезни, экспериментальную вероятность, моделирование времени реакции и т.д.) с позиций переменных и влияния, которое они оказывают на результат;
- Условное принятие решений: использование условной вероятности и основных принципов комбинаторики для интерпретации ситуаций и прогнозирования;
- PISA 2021 Mathematics Framework (First Draft) p. 29-30

Уровни математической грамотности

		(2)
Ученики обобщают, используют информацию на основе своих исследований и моделирования сложных задач. Используют знания в нестандартном контексте. Продвинутое математическое мышление	6	6
Применяют математические концепции и проводят операции для решения незнакомых задач. Объясняют ход решения. Выбирают, сравнивают, оценивают, аргументируют стратегию решения		
Ученики выбирают и объединяют информацию, проводят анализ практических задач. Используют ограниченный диапазон умений и могут рассуждать в прямом контексте, аргументируют действия	4	666
Могут следовать подробному алгоритму решений, кратко аргументируя свои действия. Простейшие интерпретации результатов и базовые рассуждения	3	
Решают задачи, в которых требуется прямое умозаключение на основе применения простейших алгоритмов, формул, действий, правил	2	9
Справляются с простейшими действиями, если задача имеет явно заданную ситуацию и дан пошаговый алгоритм решения	1	61

Наивысший уровень математической грамотности

Школьник обобщает, использует информацию на основе своих исследований и моделирования сложных задач. Использует знания в нестандартных контекстах

6-й уровень

Связывает различные источники информации и представления, плавно переходит от одного к другому. Способен к продвинутому математическому мышлению и рассуждению

Применяют свое понимание и навыки символических и формальных математических операций функций, чтобы развить новые подходы и стратегии решения задач

Анализируют свои действия, формулируют и точно сообщают о своих решениях относительно личных выводов, об их соответствии исходной ситуации

Естественно-научная грамотность

Способность вдумчиво взаимодействовать с научными идеями, задачами, которые требуют наукообразного представления

Четыре группы умений

- 1. Научно объяснять явления.
- 2. Проводить научные исследования.
 - 3. Интерпретировать научные данные и доказательства.
 - 4. Обладать глубокими предметными знаниями

Аспекты естественно-научной грамотности

Контекст

- Местные, государственные и глобальные вопросы, текущие и исторические проблемы
- Требуют понимания научных и технологических явлений

Личная позиция

- Личная точка зрения на науку.
 Проявляется через интерес к науке, технике.
- Ценен научный подход к решению задач, осведомленность о проблемах окружающей среды

Компетенции

• Способность научно объяснить явление, разрабатывать и проводить научные изыскания, интерпретировать научные данные

Знания

- Понимание значимых научных фактов, концепций и теорий в основе научного знания.
- Знание мира природы и технологических достижений (предметные).
- Понимание, как формируются знания (процессуальные), практическое применение знаний (эпистемологические)

Уровни естественно-научной ГРАМОТНОСТИ

Ученики используют предметные, процедурные и эпистемологические знания. Демонстрируют передовое научное мышление. Интерпретируют данные в различных сложных жизненных ситуациях	6
Делают множественные выводы, сравнения и сопоставления в текстах, демонстрируют полное и детальное понимание одного или нескольких текстов. Используют предметные и эпистемологические знания	5
Успешно справляются с заданиями, в которых требуется сделать выводы, опираясь на научный и технологический подход. Применяют взаимосвязное научное мышление в незнакомых ситуациях	4
Ученики определяют ясно обозначенные научные вопросы в различных контекстах. Объясняют, разрабатывают исследований, интерпретируют данные, которые требуют когнитивной деятельности среднего уровня	3
У школьников сформирован достаточный базис для объяснения решения задач, на основе простейших действия, при условии наличия знакомого контекста	2
Сформированы ограниченные представления и знания, которые применяют только в знакомых ситуациях, имеющих простейшее научное объяснение, которое следует из задания	1

Наивысший уровень естественно-научной грамотности

Ученики используют предметные, процедурные и эпистемологические знания. Объясняют, оценивают, проводят научное исследование

6-й уровень

Интерпретируют данные в различных сложных жизненных ситуациях, которые требуют высокого уровня когнитивной деятельности

Делают выводы из информации в различных источниках данных, объясняют многоступенчатые причинно-следственные связи

Различают научные и ненаучные вопросы, объясняют цели исследования, контролируют сложные данные. Делают выводы о надежности и точности научных утверждений. Демонстрируют передовое научное мышление...

ЧТО НЕОБХОДИМО ЗНАТЬ КАЖДОМУ УЧИТЕЛЮ

- Что понимается под функциональной грамотностью?
- Как переориентировать учебный процесс на эффективное овладение функциональной грамотностью?
- Каждый учитель должен проанализировать систему заданий, которую он планирует использовать в учебном процессе.
- Обратить внимание учителей на нецелесообразность тренировки обучающихся на выполнение отдельных типов заданий (проблема типичных заданий).

Особенности заданий исследования PISA

- Задача, поставленная вне предметной области и решаемая с помощью предметных знаний, например, по математике
- В каждом из заданий описываются жизненная ситуация, как правило, близкая понятная учащемуся
- Контекст заданий близок к проблемным ситуациям, возникающим в повседневной жизни
- Ситуация требует осознанного выбора модели поведения
- Вопросы изложены простым, ясным языком и, как правило, немногословны
- Требуют перевода с обыденного языка на язык предметной области (математики, физики и др.)
- Используются иллюстрации: рисунки, таблицы.

ТЕНДЕНЦИИ ИЗМЕНЕНИЯ ЗАДАНИЙ

- Изменение целевых установок
- о Увеличение характеристик заданий
- о Увеличение доли контекстных заданий
- Увеличение доли структурированных заданий
- о Перевод заданий на электронные носители
- Введение интерактивных заданий

ТРЕБОВАНИЯ К РАЗРАБОТКЕ ЗАДАНИЙ

- 1. Межпредметный подход к отбору содержания текстов.
- 2. Разнообразные ситуации и контексты, в которых необходимо
- ориентироваться с опорой на текст (учебные, личные, общественные,

деловые).

- 3. Разнообразные тексты (материалы для чтения) и источники информации.
- 4. Необходимость использования различных приемов работы с текстом.
- 5. Многовариантность решения предлагаемых задач.
- 6. Опора на личный опыт обучающегося.

РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ УЧЕБНОГО ПРОЦЕССА

- 1. Усиление межпредметного взаимодействия, проведение совместных семинаров, обсуждений; организация сетевых взаимодействий между педагогами, работа по принципу «Учимся друг у друга».
- 2. Использование задач, формулировки которых созданы не предметным языком, а бытовым или естественно-научным. Желательна практика использования задач с избытком и недостатком информации. При решении задач можно практиковать выход за задачные ситуации путем расширения описанных в задачах систем.
- 3. Использование в учебном процессе не только стандартных и традиционных информационных средств обучения (учебник, задачник, рабочая тетрадь, тематические ресурсы из сети Интернет), но и других информационных потоков, материалов телевидения, сети Интернет и т. д.
- 4. Больше внимание в учебном процессе следует уделять формированию метапредметных знаний и умений (выдвижение гипотез, постановка целей, умение обобщать, анализировать, прогнозировать и т. п.). Это означает усиление такой деятельности, которая является надпредметной, в которой используется лексикон философии, семиотики, системологии, информатики.

Задачи в 2020 г. по формированию и оценке математической и естественно-научной грамотности

Образовательным организациям:

- Обеспечить подготовку к региональному исследованию сформированности математической грамотности уч-ся 8 кл. используя схему регионального мониторинга 2019 г.
- Начать процесс формирования общешкольного банка учебных заданий по формированию и развитию функциональной грамотности.
- Обеспечить прохождение учителями математики, географии и биологии КПК по теме "Методические приёмы формирования функциональной грамотности».

СПАСИБО ЗА ВНИМАНИЕ!